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ABSTRACT. In a seminal paper in 1972 Hans Heilbronn introduced a virtual
character associated to representations of Galois extensions of number fields
and Artin’s Conjecture on the holomorphy of L-series. His construction has
evolved in both application and scope, and may now be applied to produce
what are called Heilbronn characters of arbitrary finite groups. This arti-
cle surveys the inception and development of this concept, weaving together
its number-theoretic and group-theoretic dimensions, and culminates in a de-
scription of the recent classification of unfaithful minimal Heilbronn characters.
Connections with other areas of mathematics, variations on these themes, and
possible future directions are also explored.

1. INTRODUCTION

In 1972, stimulated by a visit to the University of Toronto by L. J. Goldstein
who gave a talk on work by himself and his doctoral student Judy Sunley (|Gs75,
Su73]), Professor Hans Heilbronn wrote and lectured on the beautiful four-page
paper On the real zeros of Dedekind (-functions [He73]. Its main result is that
if F' is a finite Galois extension of a number field F', and F5 is the composite of
all quadratic extensions of F' lying in F, then any real simple zero of (g(s) is a
zero of (g, (s), where (x(s) denotes the Dedekind zeta function of any number field
K. In his paper (and the conference proceedings [He72|) Heilbronn introduced a
“bookkeeping device” for relating the zeros of the zeta function of K at a complex
point sq to zeros of zeta functions attached to the subfields of K at the same point
so, and vice versa. This simple yet seminal idea has blossomed into an entire line
of research based on what are now called Heilbronn characters, with applications
to Artin’s Conjecture on the holomorphy of L-series, and concomitant implications
in algebraic number theory. Moreover, the notion of a Heilbronn character, which
originally relied on orders of zeros and poles of L-series attached to representations
of Galois groups, has been “axiomatized” so that it may be abstracted to arbitrary
finite groups. Some of the research in this area has then focused on the work of
classifying, to the extent possible, Heilbronn characters, or more precisely minimal
Heilbronn characters, for arbitrary finite groups. In this vein there are significant
results for solvable groups; and with the completion of the Classification of the
Finite Simple Groups in hand [GLS94], an essential determination of all the finite
groups that possess what are called unfaithful minimal Heilbronn characters has
just been completed. It therefore seems an auspicious moment to survey this field
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in a self-contained, thorough, and accessible fashion, following mostly an historical
development, up to the current state of the art.

Our survey begins in Section 2] with the definition of Heilbronn characters as-
sociated to Galois extensions of number fields together with their basic properties.
Short proofs of these properties are also included at the end, as these help to il-
lustrate both the power and elegance of this line of research. The character theory
in Section ] is interwoven with number-theoretic background that illuminates the
importance of Artin L-series to fundamental classical problems in number theory,
many of which are still unsolved. These intertwined themes are further developed in
Sections Bl and @ where the first inklings of minimal Heilbronn characters for solv-
able groups emerge. A short, self-contained proof of a generalization of Heilbronn’s
original result is given at Theorem With this background and motivation in
hand, Section[Blintroduces the notion of abstract Heilbronn characters for arbitrary
finite groups, thereby extricating the original concept from its Galois-theoretic de-
pendence. This generalization is exploited, using the Classification of the Finite
Simple Groups, in Sections [l and [[, where the aforementioned determination of
groups possessing an unfaithful minimal Heilbronn character is explicated.

As with any great idea, the notion of Heilbronn characters impelled the develop-
ment of ancillary results that were employed as tools in their study. In particular,
the classification of minimal Heilbronn characters ultimately required knowledge
of all finite groups possessing what are called strongly closed p-subgroups. This
independent group-theoretic classification has far-reaching applications to areas as
diverse as the homotopy structure of classifying spaces of finite groups, modular
representation theory, and the burgeoning and very active interdisciplinary area of
fusion systems. In Section [l we briefly provide an introduction to strongly closed
subgroups and these ramifications as well.

Returning to number-theoretic themes, Sections [@ and [I0 survey applications
of Heilbronn characters and variations of Heilbronn characters to other types of
L-functions and other settings, such as elliptic curves. The article concludes with
brief remarks on some possible future directions.

Finally, as one of the authors (Foote) was present at Heilbronn’s first lecture
on this subject, and many mathematicians remember Professor Heilbronn with
enduring fondness, it is our honor to dedicate this survey to him.

2. DEFINITION AND BASIC PROPERTIES OF HEILBRONN CHARACTERS

In this section we set up the machinery and motivation for defining Heilbronn
characters associated to Galois extensions of number fields. Eschewing for the mo-
ment our historical approach, for expediency we list the exact properties of Artin
L-series that translate into the defining properties of Heilbronn characters. Histor-
ically only the definition and some of the properties of these (virtual) characters
were introduced and exploited in Heilbronn’s original work. The term “Heilbronn
character” was coined by Sandy Rhoades in her doctoral dissertation [Rh93a]. The
“axiomatic” setting evolved from work by Foote and Murty [FMR89], and was first
written out explicitly in [Fo90].

In order to be completely precise, we first define the Artin L-series attached
to a (finite-dimensional, complex) representation of a Galois group for a number
field extension. A more leisurely introduction to L-series, their properties and uses,
appears in [He67]. For those unfamiliar with this theory, it suffices for the purpose
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of this survey that Artin L-series are a family of meromorphic functions on the
whole complex plane associated to representations of a finite Galois group. We
shall see that various L-series are related functorially via inflation-restriction maps
between subgroups of Galois groups; it is primarily these relations, not the specific
L-series themselves, that determine the definition of Heilbronn characters. (But, of
course, in the number-theoretic applications, the L-series themselves are essential.)

Because some of the initial consequences of the definitions are so elementary and
far-reaching, we include very brief proofs of these, including both Stark’s Theorem
and a generalization of the classical Aramata-Brauer Theorem (both are stated
later). Readers wishing to follow only the survey may peruse these proofs lightly.

Let E/F be a Galois extension of number fields with Galois group G, and let
T : G — GL(V) be a finite-dimensional complex representation of G with character
¢. The Artin L-series, L(s, ®, E/F), is defined as follows:

-1

L(S,(,ﬁ, E/F) = H [det (1 - NF/Q(P)75T|VI (Frobp)) , s €C,
P

where the product is over all primes P in F, V! is the subspace of V fixed by the
inertia group I of a prime in F over P and Frobp is a Frobenius element of G at
that prime over P in E. The determinant is independent of the choice of prime
above P, and so the L-function is well defined. When the extension associated
to the L-series is clear, we shall simply denote the series by L(s,¢). By results of
Hecke, Artin, and Brauer, this Euler product (which is seen to converge in the right
half-plane Re s > 1) has a meromorphic continuation to the entire complex plane.
Artin’s Conjecture is that if ¢ does not contain the principal character of G, then
L(s, ) is an entire function.

The following properties of Artin L-series will ultimately serve as the function-
theoretic “axioms” for reformulating Artin’s Conjecture in the language of the
character theory of G:

(L1) L(s,91 4 v2) = L(s,11)L(s,12), where 11,9 are characters of G.

(L2) If Ey is the fixed field of ker ¢, then L(s,v, E/F) = L(s,v¢’, Ey/F), where
" is the character ¢ considered as a character of G/ker . (The kernel of
any character v is, by definition, the kernel of a representation affording
it.)

(L3) L(s,\, E/E™) = L(s,Ind%(\), E/F), where H is a subgroup of G, \ is a
character of H, Ef is the fixed field of H, and Ind% ()\) is the character
A of H induced to a character of G.

(L4) If x is a nonprincipal linear character, L(s, x) is entire; if I is the principal
character of G, L(s, I¢) = (r(s) is analytic everywhere except for a simple
pole at s = 1 (here {p(s) is the Dedekind zeta function of F').

Results (L1) to (L3) are proved in [He67] and (L4) is a consequence of Artin Reci-
procity and the analytic continuation of Hecke L-series (see [Ar27,[Hk17]). The
Artin Reciprocity Law is a grand generalization of the Law of Quadratic Reciprocity.
In general terms, it asserts that the L-function associated to a one-dimensional
Artin character is the same as the L-function associated to another type of charac-
ter, this one built entirely out of data in the ground field (that is, with no reference
to the extension). For example, for a Galois extension E of F' = Q, it asserts that
for any one-dimensional complex character y of Gal(E/Q), there is an integer N
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and a character
ry:(Z/NZ)* — C*

so that for any prime p that does not ramify in E, and any prime P of F dividing
p, we have the equality

x(Frobp) = ry(p),

where the right-hand side means the value of the character r, at the image of p in
(Z/NZ)*. In terms of L-functions, one has the Dirichlet series

L(s,ry) = ] (1—TX—@>1,

pS
pJ(N
and the statement is that

L(s,x, E/Q) = L(s,ry).

The L-series on the right belongs to a class that has been extensively studied in
the context of the distribution of primes in arithmetic progressions. In particular,
we know that it has an analytic continuation for all values of s except possibly for
a simple pole at s = 1 which occurs if and only if r, is the trivial character.

If the ground field F' is not Q, one replaces (Z/NZ)* with (Op/f)*, where Op
denotes the ring of integers of F' (the integral closure of Z in F') and f is an integral
ideal of Op canonically associated to the Galois character x. In this case, the
L-function L(s,ry) is a special case of a family studied by Hecke, and again one
knows the analytic continuation for all s with a possible simple pole at s = 1 which
occurs if and only if r, is the trivial character.

Consider again the case F' = Q. If ry is real-valued, then the fixed field of the
kernel of x is a quadratic extension K (say) of Q. In this case, a classical formula of
Dirichlet relates the special value L(1,7,) to the arithmetic of K. More precisely,
it says that

L(1,r) = 2rhg Jwi/|dk| if K is imaginary quadratic,
"X N hilogex //|dk| if K is real quadratic.

Here, hi,wk, €x, dix denote, respectively, the class number of K, the number of
roots of unity in K, a fundamental unit of K (a “smallest” generator of the group
of units, which is known to be an abelian group of rank 1), and the discriminant of
K.

A problem of significant interest from the time of Gauss was to understand the
growth of the class number hyx as K varies. In particular, Gauss conjectured that
hx = 1 for only a finite number of imaginary quadratic fields, and hx = 1 for
infinitely many real quadratic fields. The first assertion is now a theorem due to
the efforts of many authors, but culminating in the effective determination by Baker
and Stark of all imaginary quadratic K such that hx = 1, namely K = Q(v/—D)
with

(1)

D =3,4,7,8,11,19, 43, 67, 163.

Gauss’s Conjecture for real quadratic fields is still open.
Assuming K is an imaginary quadratic field, if one were to approach Gauss’s
Conjecture from the beautiful formula () of Dirichlet, we see that to make hg
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large, we need L(1,r,) to be large. In fact, if we had a bound of the form
1

2 L(1 —_—
( ) ( arX) > 10g|dK‘

this would imply that

Vx|

3 h —

®) K2 Tog [dg]

Hecke was able to prove that if L(s,r,) has no real zeros on the interval
c

4 1-—- 1

W U otV

for some constant ¢ > 0, then the bound () in fact holds. In particular, if the
Riemann Hypothesis for L(s,r,) were assumed, then the class number bound (3]
does hold, and hx — oo as |dx| — co. On the other hand, Deuring and Heilbronn
[He34] proved that if the Riemann Hypothesis were false for some Dirichlet L-
function, then also hx — oo. These complementary results thus proved Gauss’s
Conjecture in the imaginary quadratic case, albeit ineffectively. The approach of
Baker [Baker66] and Stark [St67] was to use transcendental number theory, and
they were able to obtain an effective determination of the fields K for which hx =
1. With more work, they could also do the case hx = 2 [Baker7l], [St72]. By
developing a more sophisticated version of the Deuring—Heilbronn approach and
using L-functions associated to elliptic curves, Goldfeld (combined with the work
of Gross and Zagier [Goldfeld76], [GZ86]) showed effectively that in fact
_logldk|
(loglog |dx[)?”
This is of course enough to show that hx — oo effectively, but it is still quite far
from the expected bound (B)).

What about when K is a real quadratic field? As we stated above, Gauss’s
Conjecture is still open in this case. However, the method described above of
Hecke shows that the absence of zeros of L(s,r,) in the region (@) implies that

hg >

ldx|
log |dg|

hi log e >

Another way of saying this is that if the L-function does not have zeros very close
to s = 1, then the value at s = 1 can be shown to be large. Yet another way of
saying this is to consider the Dedekind zeta function (x(s) of K. This function
has a simple pole at s = 1 with residue L(1,7,), and we have a factorization
Cx(s) = ¢(s)L(s,ry). It is known that the Riemann zeta function ((s) does not
have real zeros with Re(s) > 0, and so, if {x(s) does not have a zero very close to
s = 1, then the residue at s = 1 is large. This formulation combines both the real
and the imaginary quadratic cases.

The Brauer—Siegel Theorem is a generalization of this to certain families of num-
ber fields. It asserts that if E ranges over a sequence of number fields with the

property that
1

[E: Q]

log|dg| — oo,

then
log (ress=1(e(s)) — 0.
The result is not effective and this plays an important role in our narrative.
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Returning to general Artin L-series, it is known (see [He67]) that all Artin L-
series L(s, x) are analytic at s = 1 for all nonprincipal irreducible characters x of G;
henceforth, we consider only complex points sy # 1. Brauer’s Theorem [[s94], 8.4(b)]
gives that every irreducible character is an integral linear combination of characters
induced from linear characters of nilpotent subgroups; this together with (L1) to
(L4) establish that Artin L-series are meromorphic functions on all of C, for all
Galois extensions of number fields.

Fix some point s9 € C — {1}. In [He73] Heilbronn introduced the following
virtual (or generalized) character of any Galois group G-

(5) e = Z n(GaX)Xa

x€lrr (G)

where n(G, ¢) is the order of zero or pole of the meromorphic function L(s, $) at
s = s¢ for any character ¢ of G (not necessarily irreducible). Indeed, it follows
directly from property (L1) that

(6) n(G,9) = (g, ¢) = ords—s, L(s, 9),

where (a, 8) is the usual Hermitian product of complex class functions on G.
So this Artin L-series is analytic at sq if and only if the inner product above is
nonnegative. This permits a character-theoretic formulation of Artin’s Conjecture:

(7)

all Artin L-series for the extension E/F are analytic at sg

if and only if O is a character of G or identically zero.

Note that this definition encompasses all subgroups H and quotient groups G/N
of G as well, since each such is the Galois group of an extension of number fields
(namely, of extensions E/E* and EV /F, respectively). Thus the virtual characters
Og and O N are well defined with respect to so as well. The family of Heilbronn
virtual characters for a fixed s¢ satisfy certain compatibility properties with respect
to subgroups and quotient groups of G in the following sense (these are proved as
Proposition 2] following):

(H1) Og|g = g, for all subgroups H of G.

(H2) If N is a normal subgroup of G, then g,y is the sum of all constituents
n(G,¥)Y, where v is an irreducible character of G whose kernel con-
tains N.

(H3) If X is a linear character of a subgroup H of G, then (¢, Ind%(\)) > 0.

Recall that characters of G that are induced from linear (i.e., degree 1) characters
are called monomial characters of G. If every irreducible character of G is monomial,
G is called an M -group. Thus Artin’s Conjecture is true (at all points) if G is an
M-group. Classical results from group theory show that every nilpotent group is
an M-group and that all M-groups are solvable (see [Fe67, Section 10]).

Although properties (H1) to (H3) delineate that which we shall see are the dis-
tinguishing features of “abstract Heilbronn characters”, before defining the latter
we continue the Artin-theoretic motivation by recording some important conse-
quences of the properties of Heilbronn characters associated to Galois extensions
and L-series. From properties (L4) and (H1) it follows immediately that

(H4) 6¢|a is a character of every abelian subgroup A of G (or is identically
zero on A); more generally, ;| p is a character or zero for every nilpotent
subgroup P.
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Thus by restricting 6 to the identity subgroup, evaluating at the identity of the
group G (denoted henceforth by 1) and using the second part of property (L4),
one sees that

(H5) 0c(1g) = ords—s,Cr(S).
Since the Dedekind zeta function has no pole at sp, 0g(1g) > 0. Furthermore, by
restricting 0 to every cyclic subgroup, one sees that 6 (1g) = 0 if and only if 64
is identically zero (in which case Artin’s Conjecture is true at sg). In particular,
these considerations show

(H6) If the Dedekind zeta function of E is nonzero at sg, then Artin’s Con-
jecture is true at s, i.e., all Artin L-series L(s, 1, E/F) are analytic at
S0-

Indeed, the same considerations show that the set of zeros and poles of all Artin
L-series L(s, ¢, E/F) is contained in the set of zeros of the Dedekind zeta function
Cr(s) for all characters ¢ of G. Moreover, the order of zero of the zeta function
Cr(s) is a critical parameter in restricting the possibility that some L-function may
have a pole at sg. We shall elaborate on and exploit this in the ensuing sections.

2.1. Proofs of elementary properties of Heilbronn characters. This subsec-
tion provides very brief, self-contained proofs of most of the results cited previously.
The arguments serve to illuminate some elementary manipulations of Heilbronn
characters to obtain powerful results, as first glimpsed in Heilbronn’s original pa-
per, thereby highlighting the power and elegance of this approach.

Proposition 2.1. Let G be the Galois group of some finite Galois extension E/F of
number fields, and let 0 be the Heilbronn character of G at some point so € C—{1}.
Let r be the order of zero of the Dedekind zeta function of E at so (sor >0). The
following hold:

(1) gl = 0n for all subgroups H of G.

(2) Hg|p is a character of P for all nilpotent subgroups P of G.

(3) Og(1e) =

(4) |0c(g)| <r forallge@.

5) [0 ll3; = (0, 0u)g < r? for every subgroup H of G, with equality
holding if and only if |0 (h) | =r for every h € H.

©) 1166 1P = >, n(G,x)”.

Proof. (1) We must show that (0y , ¥ )y = (0c|u , ¥ )u for every irreducible char-
acter ¢ of H. The left-hand side is, by Frobenius Reciprocity, equal to
(6, nd%(¥))g. As observed earlier, it is immediate from property (L1) of L-
series that displayed property (@) above holds. Applying this to ¢ = Indf] () and
invoking property (L3) then shows the left-hand side equals the right, as needed.
(2) By (1), 8¢|p = 6p for P a nilpotent subgroup of G. As noted earlier, every
irreducible character of a nilpotent group is monomial, so by properties (L3) and
(L4) applied to the Galois group P, we see that each irreducible character of P
must appear with nonnegative multiplicity in fp, i.e., 8p is a character or zero.
(3) This follows by restricting fg to the identity subgroup to obtain ;). The
result now follows from (L4) applied to the extension F'/F with Galois group (1¢ ).
(4) For each g € G, 0¢ restricted to the abelian (hence nilpotent) subgroup (g)
is a character of degree r. Thus 6(g) is a sum of r roots of unity, whence (4) holds.
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(5) This follows immediately from (4) and the definition of the inner product of
0y with itself.
(6) This follows immediately from the definition of 65 and the inner product. O

As a consequence of these results we see that 8g(1g) > 0, and 6g is the zero
function if and only if 0 (1g) = 0. We will henceforth be concerned with the case
0 # 0 and so 0 (1g) > 1.

We shall see in the upcoming sections how Proposition 2l gives short and elegant
proofs—which we therefore also include in this survey—of both classical and new
results in the theory of L-series.

3. THE HEILBRONN AND STARK THEOREMS

The ideas in Heilbronn’s paper next came to light in the beautiful and important
paper by H. Stark [St74]. His motivation was to look for an effective version of the
Brauer—Siegel Theorem. At first, this would seem impossible as the discussion above
points out the difficulties even in the case of quadratic fields. However, Stark’s
insight was that this is essentially the only difficulty. The elementary development
of the previous section enables us to include a very brief, complete proof of Stark’s
Theorem. Moreover, we provide a proof of a generalization of Heilbronn’s seminal
result stated at the outset of the paper (although historically the latter preceded
and impelled the former).

Property (H6) of Heilbronn characters shows that the order of vanishing of the
Dedekind zeta function of the top field F in a Galois extension E/F plays an
important role in the determination of whether Artin L-series are analytic at s € C.
Moreover, Proposition 1] shows that this parameter is encoded in the Heilbronn
character O¢ as its “degree” 05(1lg). A critical ingredient in Stark’s work is the
extension of (H6) to simple zeros:

Theorem 3.1. If the Dedekind zeta function of E has a simple zero at sq, i.e.,
ords—s,Cr(s) = 1, then Artin’s Conjecture is true at sg, i.e., all Artin L-series
L(s,¢, E/F) are analytic at sg.

Proof. By Proposition 2] the hypothesis that (g(s) has a simple zero at sg is
equivalent to fg(1g) = 1. Proposition ZI¥(5) applied to H = G gives that || g ||? <
1. Thus the virtual character ¢ has exactly one irreducible constituent. Since
0c(lg) = 1> 0, it must be an irreducible character (i.e., have positive coefficient),
hence Artin’s Conjecture is true at sq. |

In fact, the argument tells us somewhat more. Not only is ¢ a character, it must
be a one-dimensional character (because 6g(1g) = r = 1). Moreover, if sq is real,
then x must be real-valued: indeed, if L(so,x, E/F) = 0, then L(5g, X, E/F) =0
also, and both x and X occur as constituents of 6s; hence x = X.

Since a real linear character x is a homomorphism of G into {£1}, its kernel is
a subgroup H of index at most 2 in G. By Proposition 1), for any subgroup
H, of H, the Heilbronn character 8y, = 0g|m, is the principal character of Hj.
Interpreted number-theoretically this says if E; is the fixed field of H;, then the
Dedekind zeta function of E; has a simple zero at so (and all L(s, 4, E/E;) are
analytic and nonzero at sq for all nonprincipal irreducible characters ¢ of Hy). This
gives a generalization of Heilbronn’s seminal result:
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Theorem 3.2. If the Dedekind zeta function of E has a real simple zero at sg, then
there is a subfield K of E containing F' and of degree at most 2 over F such that
for any intermediate field K C E; C E, the Dedekind zeta function of E1 has a
simple zero at sg. In particular, this holds when Ey is the composite of all quadratic
extensions of F' contained in E.

These last comments are what is behind the number-theoretic applications of the
above result. Indeed, by analytic considerations, Stark showed that in the region
where s = ¢ + it is bounded by

Q T 1
4log |dg| dlog|dp|’

the Dedekind zeta function (g(s) has at most a simple zero, and if this zero S
(say) occurs, it must be real. To simplify the discussion, let us suppose that F' = Q.
Applying the above result, Stark deduced that there is a subfield Q C K C F with
[K : Q] < 2 such that 8y is a zero of (x(s). Since the Riemann zeta function
does not have any real zeros in Re(s) > 0, this zero must belong to a quadratic
extension, and so [K : Q] = 2. In this case, we have an effective estimate

1— 5y > #

VlIdi|

<o<l, |t<

Using the elementary bound
dg| > |dK|[E:Q]/27

we deduce that )

|dE‘1/[E:Q] ’

Combining this with further analytic considerations, Stark deduces the effective
lower bound

1— 5>

1
|dp |/ EQ
for the residue. The upper bound is in fact easy to make effective, so this actually
gives an effective version of the Brauer—Siegel Theorem, at least in the case that
E/Q is Galois.

In some cases this effective upper bound can be used to get an effective lower
bound on class numbers. For this, consider the case where E is a CM-field (that
is, a totally complex quadratic extension of a totally real field). Denote by E the
maximal totally real subfield. Then [E : E*] = 2 and there is a positive integer f
such that |dg| = d% f. Moreover,

Re s521Cp(s) < (2m)"hg

Re Ss:lCE‘*’ (8) - |dE+f|%hE+ '
Using the above bounds, one has an effective lower bound for the left-hand side.
Thus one deduces an effective lower bound for the quotient hg/h g+, and hence also
for hg.

All of these results require the hypothesis that F/F is Galois. If we drop this

hypothesis, then the problem becomes considerably more complicated. Consider a
zero p of (g(s) in the region

Ress=1Cr(s) > (1 —Fy) >

£ <o<1, < ¢

-
nlog|dg| — nlogldg|’
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for some constant ¢ > 0 and n = [E : F]. Let M be the compositum of E and one
of its conjugates, say E?. Then we have the elementary estimate

log|dm| < 2nlog|dg|.

Thus the zero p lies in the region

2c 2c
1-—— <5<, |t < ———
log |das| log |das|
If we choose 0 < ¢ < 1/8, then this zero lies in the Stark region (), and so is a
simple zero of (js(s). Now if we assume Artin’s holomorphy conjecture for L/F,

where L is some extension of E that is Galois over K, then

G (s)¢n (s)

Ce(8)Cre(s)
is entire, where N = E N E?. Tt follows that (x(s) has a zero at the same point.
Moreover, as the discriminant of N is at most that of E, the same bound as above
applies to p with dg replaced with dy. In particular, p is a zero of {n(s) that
lies in the Stark region (8, and so is a simple zero. Now repeating this process, if
necessary, will yield an at most quadratic extension of F’ where this zero occurs.

In general we do not have Artin’s Conjecture. To compensate for this we have

to narrow the Stark region further and also impose an additional restriction on
the Galois closure of E/F. For example, in [KMI], [KM2] we assume that the
normal closure is solvable. To state the result precisely, we need to introduce some
arithmetical functions. For a positive integer n, set

e(n) = max a.
p||n

Also define the function v(r) = 12"~ *e!/3. Now set

3(n) = (e(n) +1)*(e(n)).
Let ¢ > 0 be sufficiently small, and suppose that (g(s) has a zero p in the region
c c
1-— < <1 t] < .
nemg(n)log|dg| ~ osh = ne(mg(n) log |dg|
Then such a zero is necessarily real and simple, and there is a field N with F' C
N C E and [N : F] <2 with {5(p) =0. This is Theorem 2.1 of [KM2].

Using this result and arguing as before, one can obtain effective lower bounds
for the class number of a CM-field whose Galois closure is solvable. Stark has
conjectured that such effective lower bounds should exist for any CM-field, but this
is still an open problem.

4. HEILBRONN CHARACTERS FOR SOLVABLE GROUPS
AND THE ARAMATA-BRAUER THEOREM

The ideas of Heilbronn and Stark remained dormant for many years until, in
1987, K. Murty began to consider whether Artin’s Conjecture for the Galois exten-
sion E/F could be proved at so € C — {1} under the assumptions that (g(s) has a
zero of order 2 at sy and the degree of E/F is odd. Murty could then invoke the
Feit-Thompson Theorem to assert that G = Gal(E/F) is a solvable group. Fortu-
itously, Murty and Foote were both participants in the Quebec-Vermont Number
Theory Seminar, and so they began to work together on this problem. Their col-
laboration resulted in the paper [FM89], which contained a number of advances.
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First and foremost, it made explicit the properties of Heilbronn characters es-
tablished in Proposition 2] (although some proofs were slightly different). Using
these, it gave a short proof of a (new) generalization of the classical Aramata-Brauer
Theorem. We include a slight digression to help motivate this theorem.

Properties (L3) and (L4) in Section Pl yield the familiar factorization of the zeta
function of E into L-series corresponding to the decomposition of the character of
the regular representation of G, reg = Ind<Gl o) (I), where [ is the principal character
of the trivial subgroup (1g ):

Cr(s) = L(s,reg, E/F) = H L(s,x, E/F)X(c).
x€lrr(G)

From this we see that for each irreducible character x of G, L(s,x) is a factor of
Cr(s) appearing with multiplicity equal to the degree of x. In particular, if I
denotes the principal character of G, then by (L2) and (L4) we see that (p(s) =
L(s,16,E/F) = L(s,I,F/F) is a factor of (g(s) with multiplicity 1. Although
Cr(s) is analytic at sg, it is not clear that the same is true after removing some of
its L-function factors, as these may be contributing zeros at sg that would cancel
poles from other L-factors. The classical Aramata—Brauer Theorem shows that we
may at least remove the single factor (z(s) from (g (s) and still retain analyticity of
the resulting product: (g(s)/{r(s) is analytic at so. The results of Subsection 2]
show, more generally, that any single L-function factor may be removed from the
above factorization of (g(s) and still retain analyticity. Indeed, even more generally
we have:

Theorem 4.1. The functions (g(s)L(s, x, E/F) and (g(s)/L(s,x, E/F) are ana-
lytic at so for every irreducible character x of G.

Proof. Using the notation of Proposition 2.I] and the properties of the character
norm, we see from its part (5) that for any irreducible character x of G,

n(G,x)* <l ||* <r*.

Thus the absolute value of the order of zero or pole of L(s, x) is less than or equal
to the order of zero of (g(s) at sg, and so the theorem follows. O

The next innovation of [FM89], the notion of minimal counterezamples to Artin’s
Conjecture, was inherent in the last main result of that paper, which is Theorem [£.2]
following. Before stating the theorem, we extract and highlight that concept. If
indeed Artin’s Conjecture is false at the point sy for some Galois extension E/F,
then it must fail in some intermediate Galois extension F;/F; of minimal degree,
where F' C F; C Fy C E. Translating into the language of Heilbronn characters,
let G1 = Gal(E1/F1) be the corresponding section of the group G. (A section of
G is any A/B where A and B are subgroups of G with B < A.) Then because of
properties (L2) and (L3), the Heilbronn character 6, has the additional properties:

(MH1) ¢, is not a character of G, but 0¢, |i is a character of H for all proper
subgroups H of G1; and

(MH2) for every irreducible character ¢ of Gy such that (fq, , ¥)e, <0, ¥ is
the character of a faithful representation of G1, and v is not induced from
any character of any proper subgroup of Gj.

The advantage of working with minimal counterexamples to Artin’s Conjecture
in the above sense and their ensuing “minimal” Heilbronn characters (satisfying
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(MH1) and (MH2)) is that G; must then possess a faithful irreducible character; in
particular by Schur’s Lemma, the center of Gy is cyclic. Furthermore, it is an easy
consequence of Clifford’s Theorem on restricting irreducible characters to normal
subgroups that every abelian normal subgroup of Gy is central (hence cyclic); see
[[s94 6.13]. In the case when G is solvable—hence rich in normal subgroups—these
conditions impose significant constraints on the structure of a minimal counterex-
ample to Artin’s Conjecture. Relying heavily on these considerations, Foote and
Murty prove the following:

Theorem 4.2. Let E/F be a Galois extension of number fields with solvable Galois
group G, and let p1,pa, ..., pn be the distinct prime divisors of | G| with py < pa <
<o < pp. If Cr(8) has a zero of order r at s = sy, where r < py — 2, then L(s, X)
is analytic at sg for all irreducible characters x of G.

Since all irreducible characters of nilpotent groups are monomial, if only one
prime divides | G |, all L(s, x) are analytic at sq in this case as well. As a consequence
of this theorem and the Feit-Thompson Theorem on the solvability of groups of
odd order the authors obtain:

Corollary 4.3. Under the hypotheses of Theorem 1.2, if G has odd order, then all
L(s, x) are analytic at every point where (g(s) has a zero of order < 3.

In a subsequent paper [F090], for the first time properties (L1) to (L4) of Artin
L-series are explicitly listed as the fundamental basis for an “axiomatic” approach
to Heilbronn characters. Each is then translated into a corresponding property of
the set of all characters of all sections of a group G. The main result of this paper
generalizes Theorem as follows. Define Mg to be the minimum, taken over all
subgroups H of G, of the degrees of all nonmonomial irreducible characters of H
(where Mg = oo if every irreducible character of every subgroup is monomial). Tt
is easy to see that Mg > pa — 1 in the case when G is solvable as in Theorem

Theorem 4.4. Let E/F be a Galois extension of number fields with solvable Galois
group G, and let s € C — {1}. If ords=s,Cr(s) < Mg, then all Artin L-series
L(s,x, E/F) are analytic at sq for every irreducible character x of G.

These two papers appear to be the best possible results for characterizing the
“minimal obstructions” to Artin’s Conjecture for the family of solvable Galois ex-
tensions. Moreover, they lead naturally to a more axiomatic approach that frees
the notion of Heilbronn character from being wedded to a Galois-theoretic context.
We investigate this line of thinking next.

5. ABSTRACT HEILBRONN CHARACTERS FOR ARBITRARY FINITE GROUPS

We now have the motivation and background for defining “abstract” Heilbronn
characters of arbitrary finite groups. Such virtual characters should satisfy at least
some of the above (H)-properties in order to be candidates for Heilbronn characters
associated to Artin L-series. It appears that the most general yet tractable family
of virtual characters is delineated by the following;:

Definition 5.1. Let G be any finite group. A Heilbronn character of G is a virtual
character # such that (6, Ind§(\)) > 0 for every degree 1 character X of every
subgroup H of G.
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In other words, the inner product of a Heilbronn character 8 with every monomial
character of G must be nonnegative. Of course every character of G is necessarily
a Heilbronn character, so we shall be concerned primarily with Heilbronn (virtual)
characters that are not characters.

We now observe that if we begin with an arbitrary (“abstract”) Heilbronn char-
acter 0 of any finite group G, we obtain “compatible” Heilbronn characters of all
sections of G, namely ones that satisfy conditions (H1) to (H4) of a Galois-theoretic
Heilbronn character, as follows: Given the setup of Definition 5.1l one now sim-
ply defines 6 to be the restriction of 6 to H for every subgroup H of G. Thus
property (H1) is tautologically imposed by this definition. Furthermore, if \ is a
linear character of some subgroup K of H, then by Frobenius Reciprocity and the
transitivity of induction,

(0, Indit(N) ) = (0c, ndF(N) )G > 0,

that is, 6y satisfies the defining condition for being a Heilbronn character of H.
Next, if N is a normal subgroup of G, define

Oc/n = Z<97 X)X
X

where the sum is over all irreducible characters x of G that contain NV in their
kernel. Evidently by (L2), if f¢ is the Heilbronn character obtained in the number-
theoretic fashion, this definition of the “quotient character” 6g,n gives precisely
the Heilbronn character attached to the Galois extension EV/F. Likewise in the
abstract setting, one easily checks that 6,y satisfies Definition .11 for being a
Heilbronn character of the abstract group G/N. Moreover, one easily sees that the
conclusions to Proposition 2.1 hold for “abstract” Heilbronn characters in place of
those obtained from representations of Galois groups. In this light, the theory of
Heilbronn characters applies independently to all finite groups.

The term “Heilbronn character” first appears in Sandy Rhoades’s doctoral dis-
sertation [Rh93a], written after the papers [FM89[F090]. More generally, for any
set of characters F of a finite group G, she defines a Heilbronn character with re-
spect to F to be any virtual character of G whose inner product with all elements
of F is nonnegative. For example, when F consists of all irreducibles, a Heilbronn
character with respect to F is just an ordinary character (or zero). When F is
not specified explicitly, we shall (as originally defined) assume F consists of all the
monomial characters of G. In the first part of her thesis, Rhoades illuminates, in a
more general setting, the “dual” approaches to Artin’s Conjecture: on one hand via
direct applications of Brauer Induction and on the other via Heilbronn characters
(see [Rh93]). The proof of Rhoades’s Theorem is a nice application of results about
positive polyhedral cones in the theory of convexity and optimization [SW75].

Theorem 5.2. Let F be a nonempty set of characters of the finite group G, and let
1 be a monzero virtual character of G. Then v can be written as a positive rational
linear combination of characters from F if and only if v is a Heilbronn character
with respect to F.

Although Theorem seems to show that no new verifications of Artin’s Con-
jecture can be obtained via Heilbronn characters alone that might not, in some
way, be established via direct applications of Brauer Induction, the efficacy of Heil-
bronn characters remains undiminished. In addition to vastly simplifying, and
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indeed generalizing, such classical results as the Aramata-Brauer Theorem, Heil-
bronn characters provide new insight and number-theoretic “leverage”, as Stark’s
Theorem and its consequences illustrate. Moreover, they effectively parameterize
(via 6(1g)) “minimal counterexamples” to both Artin’s Conjecture and, as we shall
see shortly, “minimal Heilbronn characters” of arbitrary finite groups. We have
also already seen how, given only some knowledge of orders of vanishing of zeta
functions, Heilbronn characters extend beyond the family of M-groups the frontier
of Galois groups for which Artin’s Conjecture is known to be true. Moreover, ab-
stract Heilbronn characters now yield insights about Brauer Induction in the general
theory of finite groups, as the ensuing sections will render even more manifest.

We shall be especially concerned with the theory of minimal Heilbronn char-
acters, and unfaithful Heilbronn characters, which we now define. The notion of
a minimal Heilbronn character is precisely the translation to an abstract group
setting of properties (MH1) and (MH2) of a minimal counterexample to Artin’s
Conjecture for a Galois group.

Definition 5.3. Let G be any finite group. A minimal Heilbronn character of G
is a Heilbronn character 6 such that

(MHi) 6 is not a character of G, but 0|p is a character of H for every proper
subgroup H of G, and

(MHii) if x is an irreducible character of G with (6, x) < 0, then x is faithful,
nonlinear, and not induced from any proper subgroup of G.

The kernel of any Heilbronn character 6 of G is {g € G | 0(g) = 6(1¢)}.
A Heilbronn character € is called faithful if its kernel is the identity subgroup
(and 6 is called unfaithful otherwise).

Assuming (MHi), it is an exercise that condition (MHii) can be replaced by the
following condition, so one sees that (MHi) and (MHii’) give an equivalent definition
of minimal:

(MHii") For every nontrivial normal subgroup N of G, ¢y 1is a character of G/N.

The terms degree and kernel of a Heilbronn character 6 are abuses of terminology,
since 0 is a difference of characters, so these have no strictly representation-theoretic
interpretation. In particular, the kernel is not generally a subgroup of G, but rather
a union of conjugacy classes.

For the sake of completeness we conclude this section with some complementary
results. By Theorem if y is an irreducible character of G such that (x, ¥ ) >0
for all monomial characters ¢ of G, then % is a positive rational linear combination
of monomial characters. It follows immediately then that ky is monomial for some
positive integer k. By Brauer’s Theorem every L-function is meromorphic, so if
some positive integer power of it is analytic, then the L-function itself is analytic.
By a result of Ferguson and Isaacs, [FI89], if G is solvable and any positive integer
multiple of an irreducible character x is monomial, then x itself is monomial.

A recent paper by J. Konig [Ko09] proves that if G is a finite group for which
every irreducible character has some positive integer multiple that is a monomial
character, then G is necessarily solvable. This proof relies on the Classification of
the Finite Simple Groups.

In a similar vein, Arthur and Clozel in [CI87] defined the notion of accessible
characters and proved for solvable groups that Artin’s Conjecture holds for accessi-
ble characters. However, in [Da88] E. Dade proved that every accessible character
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of a solvable group is monomial, hence again no new instances of the validity of
Artin’s Conjecture arise via their construction.

Finally, it is worth recording that the minimal non-M-groups—finite groups
that are not M-groups but all of whose proper subgroups and quotient groups are
M-groups—were classified by van der Waall in [vdWT78].

6. ZEROS OF ORDER 2
AND HEILBRONN CHARACTERS OF NONSOLVABLE GROUPS

Just after the Foote-Murty work on Heilbronn characters of small degree for
solvable groups, again motivated by both Stark and Foote-Murty, Foote and Wales
considered the general (nonsolvable) case of a zero of order 2 for (g(s) at some
so € C—{1}. As before, by Proposition 2] the corresponding Heilbronn character
fc of the Galois group G has degree 2. Moreover, by Proposition Z1i(5), || 0¢ ||? < 4;
and so if 8¢ is not already a character (in which case Artin’s Conjecture holds at
S0), O can have at most four irreducible constituents, all with multiplicity +1,
and at least one with each sign. These conditions seem difficult to deal with for
arbitrary groups; however, the abstract Heilbronn character approach allows one
to classify the minimal obstructions to Artin’s Conjecture [FW90]:

Theorem 6.1. Let E/F be a Galois extension of number fields with Galois group
G, and let sp € C — {1}. Assume the Dedekind zeta function of E has a zero of
order < 2 at sg. If Artin’s Conjecture is false at so for some character of G, then
there exist intermediate fields F C Fy C Ey C E with E1/Fy a Galois extension
with Galois group isomorphic to SLa(p) or ﬁ2(3) such that Artin’s Congecture is
likewise false at so for some (irreducible) character of this Galois group.

Here ﬁg (3) is any nontrivial semidirect product of the quaternion group of or-
der 8 by a cyclic 3-group. (Note that Gal(E;/F}) is a section of the group G.) In
the terminology of Section Bl Theorem is essentially equivalent to proving that
if the counterexample Galois group G has a Heilbronn character of degree 2, then
G contains a section isomorphic to SLy(p) for some odd prime p or SL, (3). In-
deed, this paper classifies all finite groups that possess a minimal faithful Heilbronn
character of degree 2, and so obtains a characterization applicable to general finite
groups (and likewise gives new insight into the subtleties of Brauer Induction).
This proof relies on the Classification of the Finite Simple Groups, but in a very
focused way. We sketch the Foote-Wales strategy because it became the template
for subsequent generalizations and offshoots.

For the remainder of this section assume 6 is a minimal (abstract) Heilbronn
character of degree 2 of the arbitrary finite group G. As in the case where G
is solvable, the presence of nontrivial proper normal subgroups together with the
minimality conditions provide enough leverage via Clifford’s Theorem to reduce
to the case where G is a quasisimple group (a perfect central extension of a non-
abelian simple group); this reduction takes some effort, especially eliminating the
case where G has a normal simple subgroup of prime index. Now by the Feit—
Thompson Theorem G has a nontrivial Sylow 2-subgroup 7. Let

S={zeT|0(x)=2} =kerd|r.

Note that since T' is a proper subgroup of G, the restriction 0|r is an ordinary
character of T" and so S is a subgroup of T' (i.e., here “kernel” has the usual
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representation-theoretic significance). A critical observation is that
(9) S is a strongly closed subgroup of T' with respect to G.
By definition this means the following.

Definition 6.2. Let G be any finite group, and let S and T be any subgroups of G
with § < T. We say S is strongly closed in T' with respect to G if for every s € S,
whenever gsg~! € T for any g € G we must have gsg=* € S.

If S is a p-group for some prime p, we say S is strongly closed (without reference
to T') if it is strongly closed with respect to G in some (hence every) Sylow p-
subgroup containing it.

In other words, the G-conjugacy class of each s intersected with 7" must be con-
tained in S for each s € S. The reason () holds is because 6 is a global class function
on G, so its value is the same on each G-conjugate of any element s. Strong closure
is a powerful “fusion-theoretic” condition on p-subgroups of G, and we explore this
in greater detail in Section8l Using this property together with a transfer theorem
due to Goldschmidt [Go75, Th. B|, the authors show that T/S = Qs. Lengthy
inspection of the list of all finite simple groups, using numerous structure theorems
to expedite the elimination of all but the target groups, ultimately completes the
proof.

In summary, the restriction of a minimal Heilbronn character of a finite group
G to its (proper) Sylow p-subgroups produces strongly closed p-subgroups; these in
turn provide powerful fusion-theoretic information restricting the global nature of
G.

Foote and Wales also show that their result is best possible by constructing
minimal Heilbronn characters for each of the groups listed in their conclusion. In
particular, for every prime p > 5, SLo(p) has irreducible characters x and ¢ of
degrees p + 1 and p — 1, respectively, such that x — % is a minimal Heilbronn
character of degree 2.

Finally, in the second part of her doctoral dissertation [Rh93a], Rhoades shows
that if one weakens the hypothesis in Theorem [G.I]to assume a zero of order at most
3, the same conclusion holds, i.e., there are no new minimal Heilbronn character
obstruction groups in degree 3. (Note that one could always add a character to a
minimal Heilbronn character to obtain another minimal Heilbronn character.)

7. CLASSIFICATION OF UNFAITHFUL MINIMAL HEILBRONN CHARACTERS

As noted, an essential component of the proof of the classification of “minimal
Heilbronn groups” for degree 2 Heilbronn characters is the leverage provided by
the strongly closed subgroup S of a Sylow 2-subgroup T of G where, as before,
S = kerd|r. It turns out that the ordinary character 0| is, in fact, a faithful
character of T of degree 2, i.e., S = (1lg). The 2-groups that possess faithful
representations of degree 2 have an abelian subgroup of rank at most 2 and index
at most 2.

If one could prove S = (1g) without relying on the full Classification of the
Finite Simple Groups, much less complicated classifications could then be invoked to
determine the minimal obstructions in Theorem [6Il In other words, knowing that
0 restricts to a faithful ordinary character of degree 6(1g) on a Sylow 2-subgroup
gives significant information about a minimal counterexample G. This observation
instigated the next development [Fo97a].
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Theorem 7.1. Let E/F be a Galois extension of number fields with Galois group
G. If E/F is a minimal counterezample to Artin’s Conjecture at so, then Og|r
1s a faithful character for any Sylow 2-subgroup T of G. In particular, any Sylow
2-subgroup of G has a faithful representation of degree r, where r = 0g(1g) is the
order of the zero of the Dedekind zeta function of E at sg.

Again, it is important to note that this theorem is a consequence of the corre-
sponding general theorem about abstract minimal Heilbronn characters 6 of arbi-
trary finite groups (which we omit stating, as it is, mutatis mutandis, the above
result). As in the Foote and Wales paper, the proof reduces to the bedrock case
where G is a quasisimple group. Likewise for T' € Syly(G) and S = ker 0|y, we
see immediately that S is strongly closed in T with respect to G. At this point
Foote quotes the complete classification of all finite groups possessing a strongly
closed 2-subgroup (see Theorem [R]), which was specifically proved in order to deal
with this setup (although it has significant independent ramifications, as we shall
explore in Section[)). If S = (1g ), then 0|7 is faithful, and the conclusion holds. If
(1lg) < 8 < T, then the strongly closed classification yields that G is a quasisimple
group with a BN-pair of rank 1, and we shall see that such groups easily lead to a
contradiction. It remains to handle when S =T, i.e., |7 is a multiple of the prin-
cipal character. This difficult case—about which the strongly closed classification
gives no information—is eliminated by a graph-theoretic argument which we now
sketch, as it is a cornerstone of generalizations that we shall describe later.

Recall that kerf = {g € G | 6(g) = 0(1g)} is not generally a subgroup (here
G is quasisimple, so its only proper normal subgroups are contained in its center);
however, since 0|y is an ordinary character of every proper subgroup H of G,

ker 6|y is a normal subgroup of H for every proper subgroup H of G.

The strategy is to “tie together” all these proper kernels to obtain the contradiction
that 0 is constant on all of G. To this end, define a relation on G-stable subsets of
G as follows: Let C be a union of conjugacy classes of G, let D be a single conjugacy
class, and write C — D if there is a proper subgroup H of G generated by some
elements of C such that DN H # (. Observe that if C C kerd and C — D, then
because 0|y is an ordinary character of H but H is generated by elements in the
kernel of this character, every element of H is in the kernel of 0|y. In particular,
0(d) = 0(1¢g) for some d € D, and so the entire conjugacy class D lies in the set
ker . Whenever this happens, we can then replace C by the ostensibly larger set
CUD = (' and seek new conjugacy classes D’ such that C’ — D’. The method of
proof in [Fo97a] is that if S = T', then we may begin this process by taking C to be
the set of all 2-elements in G. Ultimately, Foote shows that every conjugacy class
is “swallowed-up” via the — generation process, hence ker 8 = GG, a contradiction.

To illustrate, consider when G 2 Sz(2") is a Suzuki simple group. In this group,
assuming only S # (1lg), we get that S contains some involution in G. Thus
ker @ contains the (single) class of all involutions. If an involution s inverts an
odd order element x of G, then x lies in the dihedral group (s,z) = (s,zsx~!),
and so all such odd order elements lie in kerf. In Sz(2™) this includes all odd
order elements. Finally, the Sylow 2-subgroup 7" is normalized by an odd order
element h (a Cartan element of G) such that T = [T, h]. Thus T is contained in
ker 8|y because H = (T,h) is a proper subgroup generated by conjugates of h.
This shows 6 is constant on all of GG, a contradiction. Indeed, an analogous short
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“chain of arrows” may be constructed to eliminate each of the BN-rank 1 groups
mentioned above where (1¢) < S < T. More elaborate chains are needed for other
quasisimple groups.

The SLs(p) examples in [FEW90], for p a prime > 5, show that if G is a quasisim-
ple group possessing a minimal Heilbronn character 6, then 6 need not be faithful.
More specifically, the minimal Heilbronn characters of degree 2 on these groups
all restrict to twice the principal character on a Sylow p-subgroup. This somewhat
discouraging observation, together with the lack of a classification of strongly closed
p-subgroups for p odd, impeded progress along these lines for over ten years.

In early 2007, Ramoén Flores contacted Foote seeking information about strongly
closed p-subgroups for odd primes p in order to extend some work he was doing in
the area of homotopy, completely unrelated to Heilbronn characters. Flores, along
with J. Scherer [FS07], gave a complete description of the BZ/2Z-cellularization of
classifying spaces BG for all finite groups G, by classifying the possible homotopy
types of CW gy/27 BG. Their classification relied, in an essential way, on the clas-
sification of finite groups possessing strongly closed 2-subgroups. Flores wished to
extend his results to odd primes. As a result, he and Foote collaborated to first give
a complete classification of all finite groups possessing a strongly closed p-subgroup
for all odd p [FF09], and then used this to prove the corresponding BZ/pZ-cell
structure classification for odd primes p too [FE1I]. For quasisimple groups, the
families of strongly closed “obstructions” obtained for p odd is much more diverse
than for p = 2, and includes a wide range of Chevalley simple groups as well as
some sporadic simple groups (see Theorem following). This unexpected col-
laboration, impelled by problems in completely different fields, then provided new
impetus to the study of Heilbronn characters (and to other areas, as will be outlined
in Section []).

With the aforementioned group-theoretic classification in hand, Hy Ginsberg un-
dertook the project of extending Theorem [Z1] to all odd primes. More precisely,
he set out to characterize exactly which groups possess a minimal Heilbronn char-
acter that fails to restrict to a faithful character on some Sylow p-subgroup. In
other words, Ginsberg sought to classify groups that possess an unfaithful mini-
mal Heilbronn character. The main result of his doctoral dissertation [Gil0LIGil1]
follows:

Theorem 7.2. Suppose G is a finite group possessing an unfaithful minimal Heil-
bronn character 8. Then 0 restricts to an unfaithful character of some Sylow sub-
group of G, and if P is a Sylow p-subgroup of G on which 0 is unfaithful, then all
of the following hold:
i) p is odd;
(ii) G is quasisimple with a cyclic center of order prime to p;
(iii) P is cyclic;
(iv) Ng(P) is a mazimal subgroup of G; and
(v) either Ng(P) is the unique mazimal subgroup of G containing Qq (P) (the
subgroup of order p in P) or G/Z(G) = La(q) for q an odd prime with
p dwiding ¢ — 1. (In the latter case Q1(P) is also contained in a Borel
subgroup Ng(Q) for some Sylow q-subgroup Q of G.)
Conversely, suppose G is a finite group, and for some prime p and Sylow p-subgroup
P of G conditions (i) to (v) above hold. If Py is any nontrivial subgroup of P, then
G has a minimal Heilbronn character whose restriction to P has kernel equal to Py .
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This result established highly restrictive necessary and sufficient conditions for
a general finite group to have an unfaithful minimal Heilbronn character.

Ginsberg’s determination of the necessary conditions follows the same overall
strategy as in the p = 2 classification, first reducing to the quasisimple case, then
handling the groups that possess “nontrivial” strongly closed p-subgroups (quoting
the Flores—Foote classification). He unravels the “arrow” relationship in simple
groups, starting from the configuration that the initial “C” is a set of p-elements of
G, for appropriate odd prime p. He achieves some savings by quoting the overall
p = 2 classification whenever some nontrivial 2-element lies in the kernel of the
minimal Heilbronn character restricted to some proper subgroup. However, he had
considerable work to do since there are an array of different quasisimple groups
that satisfy his conditions (i.e., he is not simply heading for a contradiction, as
described in the p = 2 case).

To prove that conditions (i) to (v) are also sufficient, Ginsberg showed how to
construct the desired unfaithful minimal Heilbronn characters on such a quasisimple
group. He took a faithful irreducible character x of G and then redefined x on p-
elements in such a way that it has any specified kernel P; when restricted to the
Sylow p-subgroup P. He then showed that the resulting class function 6 restricts
to an ordinary character on every proper subgroup, hence is a virtual character
(hence an unfaithful minimal Heilbronn character) by Brauer’s Characterization of
Characters. The “uniqueness” condition (v) on P—which says that P is “isolated”
from the rest of G in some respects—is crucial to showing that the redefinition
of x does not destroy the property that the modified x remains a character when
restricted to all proper subgroups.

Ginsberg classifies the unfaithful minimal Heilbronn characters for the simple
groups Lo(g) in (v) in [Gil3al.

Finally, Ginsberg recently essentially classified all quasisimple groups satisfying
conditions (i) to (v) in [Gil3b].

Theorem 7.3. Assume G is a finite quasisimple group, p is an odd prime dividing
the order of G, a Sylow p-subgroup P of G is cyclic, and Ng(P) is the unique
mazimal subgroup of G containing Q1 (P). Then G/Z(G) is isomorphic to one of
the following groups:

(i) An alternating group A, of prime degree, with p # 11 and p # 23. The
cyclotomic polynomial ®4(q) does not equal p for any prime d and prime
power q.

(ii) A linear group La(p).

(iii) A linear group L, (q), ¢ = r' for some prime r # p, with n a prime, t odd,
and ord,(r) = nt. The prime p does not divide the order of any subgroup
in the collection S of almost simple subgroups of G.

(iv) A unitary group U,(q), q = r* for some prime r # p, with n an odd prime
and ord,(—r) = nt. The prime p does not divide the order of any subgroup
in the collection S of almost simple subgroups of G.

(v) A Suzuki group % Bs(q) with ord,(go) = 4t whenever qo > 2 and q = ¢} for
t=1 ort prime.

(vi) A Ree group *Ga(q) with ord,(qo) = 6t whenever ¢ = ¢f fort =1 ort
prime.
(vii) 3D4(q) with ord,(qo) = 12t whenever ¢ = i for t =1 or t prime.
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(viil) A Ree group >Fy(q) with ord,(qo) = 12t whenever ¢ = ¢} fort =1 ort
prime.
(ix) Fs(q) with ord,(qo) = 15t, 24t, or 30t whenever q = q§ fort = 1 ort
prime.
(x) A sporadic group: Jy with p = 19; Mss with p = 23; Ly with p = 37 or
p=67; Jy with p=29 or p =43; Fi, with p=29; or B with p =47.
Moreover, except in case (ix), the given conditions are also sufficient.

The collection of almost simple subgroups of a classical group G is discussed in
[KLI0]; ord,(gq) denotes the multiplicative order of ¢ modulo p. The sufficiency
condition in this theorem is a consequence of the Bang—Zsigmondy Theorem on the
existence of primitive prime divisors of a™ — 1 [Ba86,[Ro97].

This result together with Theorem [[.2lnow give an essentially complete classifica-
tion of the groups that possess unfaithful minimal Heilbronn characters, and hence
a corresponding classification for minimal counterexamples to Artin’s Conjecture.

Corollary 7.4. Let E/F be a Galois extension of number fields with Galois group
G. If E/F is a minimal counterexample to Artin’s Conjecture at so, then either
the Heilbronn character of G at sg is faithful, i.e., ker8g = (1g), or there is an
odd prime p such that 0|p is not faithful for some Sylow p-subgroup P of G, and
the pair (G,p) is as described in the conclusion to Theorem [[3] or G = Ly(q) for
q an odd prime with p dividing q— 1. In particular, in the former case every proper
subgroup of G has a faithful representation of degree r, where r = 0g(1¢) is the
order of the zero of the Dedekind zeta function of E at sg.

Note that the conclusion 6g is faithful, imposes significant restrictions on the
structure of GG. In this case every proper subgroup of G has a faithful representation
of degree r; in particular, the rank of every abelian subgroup of G is at most r.

8. STRONGLY CLOSED SUBGROUPS OF FINITE GROUPS

Because the theory of strongly closed subgroups plays such an important role
in the study of Heilbronn characters, and is also central to finite group theory as
well as to some other areas of mathematics, this section is a brief diversion that
highlights some major results employed in—and partially impelled by—Heilbronn
character research. Subsequent sections do not rely on it, so this section may be
skipped or postponed by readers wishing to return expeditiously to L-functions.

As noted earlier, the classification of all finite groups possessing a strongly closed
p-subgroup was first carried out for p = 2 [Fo97h] with the specific intention of
using it to prove Theorem [.I]on minimal Heilbronn characters—the latter theorem
appears in the same journal issue as the strongly closed classification. About ten
years later, Flores instigated the p odd strongly closed subgroup classification for
applications in homotopy theory (having used the p = 2 result in his earlier work).
The p odd classification was then employed by Ginsberg to determine all unfaithful
minimal Heilbronn characters, thereby coming full circle. The theory of strongly
closed subgroups has a rich and extensive history within the overall theory of finite
groups, and it would be too long and take us too far afield to survey it. We therefore
include this brief section, following closely the introduction in [FF09], to give an
aper¢u of the area and its larger scope.

For any finite group G and subgroup T we say two elements of T are fused in
G if they are conjugate in G but not necessarily in 7. This concept has played
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a central role in group theory and representation theory, particularly in the case
when T is a Sylow p-subgroup of G for p a prime.

Recall from Definition that a subgroup S of T is called strongly closed in
T with respect to G if for every a € S, every element of T that is fused in G to
a lies in S; in other words, a® N'T C S, where a“ denotes the G-conjugacy class
of a. It is easy to verify that if S is a p-subgroup, then S is strongly closed in
a Sylow p-subgroup if and only if it is strongly closed in Ng(S), so the notion of
strong closure for a p-subgroup does not depend on the Sylow subgroup containing
it. For a p-group S we therefore simply say S is strongly closed. Seminal works
in the theory of strongly closed 2-subgroups are the celebrated Glauberman Z*-
Theorem [GI66] and Goldschmidt’s theorem on strongly closed abelian 2-subgroups
[GoT74]. The Z*-Theorem proves that if S is strongly closed and of order 2, then
S < Z(G), where the overbars denote passage to G/Og (G). Goldschmidt extended

this by showing that if S is a strongly closed abelian 2-subgroup, then <§G> is
a central product of an abelian 2-group and quasisimple groups that either have
a BN-pair of rank 1 or have abelian Sylow 2-subgroups. These two theorems, in
particular, played fundamental roles in the study of finite groups, especially in the
Classification of the Finite Simple Groups.

The concept of strong closure has important ramifications beyond finite group
theory. In particular, it is intimately connected to Puig’s formulation of fusion
systems (or Frobenius categories), which evolved from the modular representation
theory of finite groups (each p-block of a finite group has an associate fusion sys-
tem). A fusion system on any finite p-group T is a collection of injections between
subgroups of T' satisfying various axioms (see [As07]). This construct subsumes the
special case when T is a Sylow p-subgroup of some finite group G, and the collection
of maps consists of all conjugation maps H — gHg~ ! whenever H and gHg™ ' are
both subgroups of T for any g € G. In other words, in the latter context a fusion
system “throws out” the ambient group G and retains only the (abstract) maps in-
duced on various subgroups of T' by G-conjugation. (There are examples of fusion
systems on a specific p-group T that cannot arise from just conjugation maps by
embedding T as a Sylow subgroup of some finite group G; so the category of fusion
systems properly contains the group-theoretic families of examples.) The concept
of strong closure extends in an obvious way to abstract fusion systems and plays a
critical role therein: if F is a fusion system on a p-group 7', then the “homomorphic
images” of F are in bijective correspondence with the strongly closed subgroups of
T. Fusion systems were further refined by Broto, Levi, and Oliver in [BLO03] to
create the class of p-local finite groups (see also [As07,[BLO07,BCGLOQ7,[Li06]).
Oliver then used this approach to prove that the homotopy type of the p-completed
classifying space of a finite group G is uniquely determined by the (saturated) fu-
sion system (G,T), where T is a Sylow p-subgroup of G. Thus strong closure and
its extensions to fusion systems and p-local finite group theory also has significant
ramifications in deep and currently very active areas of modular representation
theory and algebraic topology.

To describe the main classification, we introduce some notation. Henceforth p is
any prime, T is a Sylow p-subgroup of the finite group G, and S is a subgroup of 7.
First note that strongly closed subgroups abound in finite group theory: Namely,
if N is any normal subgroup of G, then T'N N is a Sylow p-subgroup of N and is
also strongly closed in G. Thus the presence of strongly closed subgroups suggests,
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but does not guarantee, the presence of normal subgroups. Indeed, the aim of the
classification is to characterize the “obstructions” to this phenomenon. To do so
we must first quotient out the largest “natural” factor.

In general let R be any p-subgroup of G. If N3 and N» are normal subgroups
of G with RN N; € Syl,(N;) for both i = 1,2, then RN N1 Ny is a Sylow p-
subgroup of N3 N,. Thus there is a unique largest normal subgroup N of G for
which RN N € Syl,(N); denote this subgroup by Or(G). Thus

R is a Sylow p-subgroup of ( R®) if and only if R < Or(G).

Note that | O, (G/Or(G)) | = 1; in particular, if R = (1g ) is the identity subgroup,
then Or(G) = Op (G). In general, ROr(G)/Or(G) does not contain the Sylow p-
subgroup of any nontrivial normal subgroup of G/Og(G); in other words, Ox(G) =
(1g), where overbars denote passage to G/Or(G). Observe that strong closure
passes to quotient groups, so when analyzing groups where R £ Og(G), we may
factor out Or(G). With this in mind, the classification for strongly closed 2-

subgroups from [Fo97a] is as follows:

Theorem 8.1. Let G be a finite group thal possesses a strongly closed 2-subgroup
S. Assume S is not a Sylow 2-subgroup of (SY), and let G = G/Og(G). Then

S # (1¢) and (§G> =Ly x Ly x - -+ X Ly, where each L; is isomorphic to Us(2™)
or Sz(2") for some n;, and SN L; is the center of a Sylow 2-subgroup of L;.

The classification for p odd [FF11] yields a more diverse set of “obstructions”
with added “decorations” as well.

Theorem 8.2. Let p be an odd prime, and let G be a finite group that possesses
a strongly closed p-subgroup S. Assume S is not a Sylow p-subgroup of ( S¢), and
let G =G/0g(G). Then S # (1¢) and
(10) (%)= (L1 x Ly x - x L,)(D - Sp),
where r > 1, each L; is a simple group, and S; = S N L; is a homocyclic abelian
group. Furthermore, D = [D, Sg] is a (possibly trivial) p’'-group normalizing each
L;, and SF is a (possibly trivial) abelian subgroup of S of rank at most r normalizing
D and each L; and inducing outer automorphisms on each L;, and the extension
(S1---8,) : Sp splits. Fach L; belongs to one of the following families:
(i) L; is a group of Lie type in characteristic # p whose Sylow p-subgroup
is abelian but not elementary abelian. In this case the Sylow p-subgroup
of L; is homocyclic of the same rank as S; but larger exponent than S;;
here D/(D N L;iCx(L;)) is a cyclic p’-subgroup of the outer diagonal au-
tomorphism group of L;, and Sg/Cs.(L;) acts as a cyclic group of field
automorphisms on L;.
(ii) L; =2 Us(p™) or Re(3™) is a group of BN-rank 1 (p = 3 with n odd and
> 2 in the latter family). In the unitary case S; is the center of a Sylow p-
subgroup of L; (elementary abelian of order p™), and in the Ree group case
S; 1is either the center or the commutator subgroup of a Sylow 3-subgroup
(elementary abelian of order 3™ or 3*", respectively). In both families D
and Sg act trivially on L;.
(iil) L; = Ga2(q) with (¢,3) = 1. Here|S;| =3 and both D and SF act trivially
on L;.
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(iv) L; is one of the following sporadic groups, where in each case S; has prime
order, and both D and Sg act trivially on L;:

(p=3) : Jo;
(p=5) : Cos, Coy, HS, Mc;
(p=11): J,.

(v) L; 2 Js, p =3, and S; is either the center or the commutator subgroup
of a Sylow 3-subgroup (elementary abelian of order 9 or 27, respectively).
Here D and S act trivially on L;.

The proof of Theorem [B2lrelies on the Classification of the Finite Simple Groups,
which in turn relies heavily on the Glauberman—Goldschmidt results cited earlier;
so Theorem does not give an independent verification of the latter.

We note that for p odd, “most” simple groups possess a nontrivial strongly
closed p-subgroup that is proper in a Sylow p-subgroup; that is, conclusion (i) of
Theorem is the “generic obstruction” in the following sense. Let £, (q) denote
a simple group of Lie type and BN-rank n over the finite field F, with (¢,p) = 1.
For all but the finitely many primes dividing the order of the Weyl group of the
untwisted version of £,,(q), the Sylow p-subgroups of £,,(g) are homocyclic abelian.
Furthermore, the order of £, (¢q) can be expressed as a power of ¢ times factors of
the form ®,,(¢)"™ for various m,r,, € N, where ®,,(x) is the mth cyclotomic
polynomial. Then it can be shown that if mg is the multiplicative order of ¢
(mod p), then p divides ®,,,(¢) and the abelian Sylow p-subgroup of L,(q) is
homocyclic of rank r,,, and exponent | ®,,,,(q) |, (see [GL83| 10.1]). In particular it
is not elementary abelian whenever p? | ®,,,,(q). For example, this is the case in the
groups PSL,.1(q) whenever p > n + 1 and p? divides ¢™ — 1 for some m < n + 1.
Thus for fixed n and all but finitely many p, this can always be arranged by taking
q suitably large.

9. APPLICATIONS TO OTHER L-FUNCTIONS

The formalism of Heilbronn characters described in the previous sections can be
applied to L-functions other than Artin L-functions. In [RKI] an application to
the L-function of an elliptic curve is investigated. We briefly describe that here.
Consider an elliptic curve C' defined over the number field F. This is a complete
genus 1 curve with a model over F' and having an F-rational point. As is well
known, this means that we can define an F-rational group structure on the set of
points C(F). By the Mordell-Weil Theorem, for any finite extension E/F, the
set of E-rational points C'(E) is a finitely generated abelian group, and so we may
speak of its rank. We certainly have the inequality

(11) rank C'(FE) > rank C(F).
Associated to C' and E there is an L-function given as an Euler product

L(s,C,E) = [ [ Lu (s, Cu, k).

Here the product is over finite primes w of F, and k,, denotes the residue field at
w. Moreover, C, is the “reduction” of C' modulo w. Apart from a finite number
of primes w, the factor can be described as follows:

Luy(8,Cupy k) = (1 — ay(Nw)™* + (Nw)l_%)71 .
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Here the rational integer a,, is given by the formula
ay = Nw +1—[C(ky)l,
and Nw denotes the norm of w. Because of the Hasse bound
|aw < 2(Nw)'/?,

the product above converges absolutely for Re(s) > 3/2. It is conjectured to have
an analytic continuation for all s, and in many cases this is now known (beginning
with the spectacular work of Wiles and continuing with the work of his students
and others).

Assuming the analytic continuation, the conjecture of Birch and Swinnerton-
Dyer asserts (in its weak form) that

ords—1L(s,C, E) = rank C(FE).
Combining this with the inequality (1), this conjecture predicts that
ords—1L(s,C, E) > ords—1L(s,C, F).

More generally, we even expect that this inequality should hold at all points, in
other words

the quotient L(s,C, E)/L(s,C, F) is entire.

This is the elliptic analogue of Dedekind’s Conjecture. In [RK1l, Theorem 1], it is
shown that if C' has complex multiplication, then the analogue of the Aramata—
Brauer Theorem holds; in other words, the quotient is entire for E/F Galois. An
elliptic curve C' is said to have complex multiplication if its ring of endomorphisms,
End C, is strictly larger than Z. In this case End C is in fact an order in an
imaginary quadratic field K (say). From the work of Deuring, it is known that the
L-function can be expressed in terms of L-functions associated to Hecke characters
(of infinite order) of K.

For a non-Archimedean prime v of K, restricting a Hecke character v of K to
the multiplicative group K¢ of the completion at v, gives a character ,, and the
Hecke L-function associated to v is given by an Euler product

v =TI (1-55)

where the product is over the non-Archimedean primes of K at which 4 is unram-
ified, and m, denotes a uniformizing parameter of K. The work of Hecke (recast
in the language of ideles by Tate in his thesis) shows that this L-function has an
analytic continuation as an entire function of s with a suitable functional equation.

Deuring [De] proved that if K C F', then there are Hecke characters 1,9 of F
of infinite order such that

(12) L(s,C,F) = L(s, %1, F)L(s,12, F).

If K ¢ F, then M = KF is a quadratic extension of F' and there exists a Hecke
character ¢ of M such that

L(s,C, F) = L(s, %, M).

To explain how the ideas described in this article can be used to prove the
above-mentioned analogue of the Aramata—Brauer Theorem for CM elliptic curves,
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consider the special case K C F. We need the concept of an Artin—Hecke L-
function. If x is a character of G = Gal(E/F) with underlying space V and ¢ is a
Hecke character of F', we define

L(s,9 ® x, E/F) = [ [ det(1 = 9 (v)x(Frob, ) yr (Nv)~*) 7,

where the product is over (non-Archimedean) primes of F'. Artin—Hecke L-functions
satisfy the formalism given in properties (L1)—(L4) of Section 2l In particular, if
X = Indg¢, then

(13) L(S7¢®X7E/F):L(S7’(/}ONEH/F®¢7E/EH)7

where for any extension M of F', we denote by Nj;/p the norm map from M to F.

By Brauer Induction and class field theory, the Artin—Hecke L-series are known
to have a meromorphic continuation for all s. Moreover, the identity ([I3]) above
shows that if the Artin character y is the induction of a one-dimensional character,
say x = Indgqﬁ, then the L-function L(s,9¥ ® x, E/F) is in fact holomorphic except
possibly at s = 1, where there may be a simple pole that occurs if and only if the
character ) o Ngu p ® ¢ is the trivial character. In particular, if 1 is of infinite
order, L(s,v ® x, E/F) is entire.

In any case, for any subgroup H of G and any character ¢ of H, we may define
the integer

’I’L(H, QZS) = OrdS:SOL(Sawl ONEH/F ® (b? E/EH)L(S7/¢2 ONEH/F ®¢>E/EH)7

where 11,19 are the Hecke characters from Deuring’s theorem (I2)). Then one may
consider the Heilbronn (virtual) character

bac = Z n(G, x)x,

X

where as usual, the sum is over the irreducible characters y of G. It is easy to verify
that the properties of Heilbronn characters described in Proposition 2] apply to
this character, suitably interpreted. Indeed, we have

L(Su Cu E) = L(&wl o NE/Fa E)L(Su 2/12 o l\IE/Fv E)
Moreover, for any Hecke character ¢ of F' and any finite Galois extension E/F with
Galois group G, we have
L(Sv'(/) © I\IE'/Fa E) = L(SMP ® Ind?GIGvF) = L(Sv'(/) R reg, F)

In particular, we see that 6 (1) is the order at sg of L(s, C, E). Moreover, using
the same argument as in the proof of Proposition 2I(1), we see that for any sub-
group H of G, the restriction of g ¢ to H is equal to 8y ¢+, where C’ is the base
change of C' to the subfield E*! fixed by H. Thus, as in Proposition 21[(4), we see
that for any g € G, we have

10c.c(9)l <bcc(la).

Hence,

> (G x)? = Becll® < bac(le)
X
It follows that

n(G, Ig) < n(G,reg),



490 RICHARD FOOTE, HY GINSBERG, AND V. KUMAR MURTY

where I is the principal character of G; and so, in particular, L(s,C, E)/L(s,C, F)
is entire.

For curves without complex multiplication, it is shown in [RK1, Theorem 2],
that the quotient is entire provided E/F is solvable. For this we have to invoke the
Arthur—Clozel theory of base change. We refer the reader to [RK1] for the details.

10. REFINEMENTS AND VARIATIONS

Consider the original Heilbronn (virtual) character (). Ram Murty [RMI],
studied the modified Heilbronn character
92; = 6‘(; — ?”L(G,IG)IG.

Suppose that for every cyclic subgroup H of G, we have n(H, Iy) > n(G, Iz). Then
the same arguments as in Section 2] show that

> (G )I? < (n(G,reg) — n(G, Ig))*.
x#la

In particular, if for every cyclic subgroup H of G=Gal(E/F'), we have (gu (s)/(r(s)
is analytic at s = sp, then
> UG x)? < (ordu=syCa(s)/Cr(s))*.
x#la
The hypothesis is satisfied if F/F' is solvable.
Ram Murty and A. Raghuram [RR] give a slight generalization of the above
in which the trivial character is replaced by any one-dimensional character. More

precisely, they prove that for any one-dimensional character xq of the solvable group
G = Gal(E/F) we have

(14) > (G, x)? < (orde—s,Cr(s)/L(s, X0, B/ F))*.

XF#X0
To prove this, the work of Uchida and van der Waall shows that given a subgroup
H of G, there are subgroups H; and one-dimensional characters v; of H; such that

IndG Iy = Ic+ Y Indf ;.
Tensoring both sides by x and writing ¢ = x|x, we have
Indf¢ = x + Y Ind ¢},
where ¢’ = 1; - x|p,. It follows that the quotient
L(s,Indfjw, E/F)/L(s, x, E/F)

is analytic at all s # 1. Notice that this can be rephrased in the following (ap-
parently more general) form: Let H be any subgroup of G, and let ¢ be a one-
dimensional character of H. Let x be a one-dimensional character of GG, and let
m(x,¥) denote the multiplicity of x in Ind$4. Then

L(s,Ind§v, E/F)/L(s, x, E/F)"¥)

is analytic at all s # 1.
Using this, it follows that for any cyclic subgroup H of G, we have

In‘(Hv d]) - ’I’L(G, XO)m(X07 iﬁ) > 0.
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Thus the analogue of the hypothesis of the result of Ram Murty is satisfied, and
proceeding as in that paper but working with the modified Heilbronn character

08 = 0c — n(G, xo) X0,

they deduce that (I4) holds.
In [RR] this is further sharpened to show in fact that for all sg,

(15) S (G < (ordin 20N

(g)>1 Cgab(8)

Here E% denotes the fixed field under the commutator subgroup [G,G]. In par-
ticular, it follows that (g(s)/(ges(s) cannot have any simple zeros or poles. The
latter statement follows from the first because of the factorization

Cu(9)/Coar(s) = [ L(s,x, B/F)Ue).

x(1lg)>1

To prove the former statement, one considers the Heilbronn-like function
0 =0c— Y. n(Gx)x
x(1g)=1
As usual, we have the inequality
Z G, x)? |G\ Z 10 (g
x(1g)>1 geq
Moreover, we have for any g € G and H the subgroup generated by g,
0c(9) =0ule)— D n(G x)x(9)

x(lg)=1
(16)
=" (n )= > n(Gx){x. mdGe) | v(g).
yeH x(1g)=1

Suppose we could prove that all the coefficients on the right-hand side of (8] are
nonnegative. We would then have for any g € G,

06(9) < > [ n(H )= D n(Gx)(x, Indfy)
el x(1g)=1

The expression on the right can be written as

o ( [yes L(s, v, E/EH) )
S=S, .
’ Hweﬁ Hx(1G)=1 L(s, X,E/F)<X’Indg¢>

The numerator is of course

ords—s,Cr(s).
Since
DO dGe) = (Xlm, ) = (xlm, regy ) =1,
yeH pel
it follows that the denominator is

(17) I ZG.x.E/F).

x(1g)=1
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Since
> x=Idf ¢lica,
x(lg)=1
it follows that (I7) is equal to (gas(s).

Ram Murty and Raghuram also introduced the notion of the level of an irre-
ducible character x of a solvable group G. Define, as usual, G = [G(i’l), G(ifl)]
and G©) = G. This is the derived series and, as we are assuming G is solvable,
GW = (1g) for i sufficiently large. The level of x is then the least i for which
Xlam = x(le)lgm -

Armed with this concept, Lansky and Wilson [LW] proved the following variation
of ([T): For each i let E* denote the subfield of E fixed by G®). Thus E' is E.
Then

Z n(G, x)? < (ordg—s, Cpi(s)/Cpi(s))?.
x of level 7
It is interesting to note that the case ¢ = 1 of this result is not the same as (IH]).
There seems to be some scope for further work here.

11. CONCLUSION

We conclude with some brief thoughts that, in the spirit of the previous section,
may motivate new lines of investigation in the general realm of Brauer Induction
via Heilbronn characters, with concomitant applications in number theory.

Every irreducible character y of a finite group G can be written (nonuniquely)
as a difference x = ¢1 — ¢, where both ¢1, ¢2 are nonnegative integer sums of
monomial characters. For fixed x if this is done in such a way as to minimize, say,
the degree of ¢1 + ¢, what can generically be said about this (minimal) degree
or the degrees of each ¢;7 Are there tight “order of magnitude” or “asymptotic”
upper bounds in terms of functions of | G| (perhaps for restricted classes of G such
as solvable groups, or specific families of quasisimple groups)? What then are some
number-theoretic consequences if “effective” bounds can be established?

As mentioned at the outset, the virtual character 65 was introduced by Heil-
bronn as a “bookkeeping device” for relating zeros and poles of various L-series;
and although character theory is essential throughout the development, the de-
gree O (1g) of the Heilbronn character has played a paramount role, especially
in number-theoretic applications. In the spirit of the McKay-Thompson “Haupt-
module” series for the Monster (and other) simple groups [CN79], are there in-
terpretations or uses of the values of O at elements other than the identity for
Galois Heilbronn characters? For example, what about 6 (t) for ¢ an involution in
a group of even order? Likewise, are there representation-theoretic constructions
or interpretations for (Galois) Heilbronn characters? For example, can Heilbronn
characters be realized as Euler characteristics for Galois groups acting on some
cohomology groups (similar to the Deligne—Lusztig construction [DL76])?

Using the compatible behavior of Heilbronn characters under inflation and re-
striction, one may associate a “canonical Heilbronn character” to Gal(@/ Q), pa-
rameterized by sy € C. Can this family of virtual characters be studied using
profinite techniques?

By work of Langlands and Tunnell [Tu81], Artin’s Conjecture is known to be
true for L(s,¢, E1/Fy), where ¢ is a two-dimensional representation of a solvable
Galois group Gal(F;/Fy). By the breakthrough work of Khare and Wintenberger
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(IKW], Section 10.2]) we also know it for any odd two-dimensional representation
of Gal(Ey/Fy). What (new) verifications of Artin’s Conjecture—or new families of
minimal counterexamples—accrue from generalizing Definition 5.1l to additionally
impose that (6, Ind%(¢)) > 0 for all degree 2 characters ¢ of subgroups H of
G which are odd, or which have H/ker ¢ solvable (as well as for ¢ any degree 1
character)? In particular, what can one say about the (more restricted) family of
“minimal unfaithful Heilbronn—Langlands characters” in this setting?

In conclusion, this survey shows how a strikingly simple yet elegant construction
can lead to profound insights, new results and perspectives, and entirely new areas
to explore.
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