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ABSTRACT. It is possible that a simple (or absolutely simple) Abelian variety
defined over a number field splits modulo every prime of good reduction. This
is a new problem that arises in designing crypto systems using Abelian varieties
of dimension larger than 1. We discuss what is behind this phenomenon. In
particular, we discuss the question of given an absolutely simple abelian variety
over a number field, whether it has simple specializations at a set of places of
positive Dirichlet density? A conjectural answer to this question was given by
Murty and Patankar, and we explain some recent progress towards proving the
conjecture. Our result ([14], Theorem 1.1) is based on the classification of pairs
(G, V) consisting of a semi-simple algebraic group G over a non-archimedean
local field and an absolutely irreducible representation V' of G such that G
admits a maximal torus acting irreducibly on V.

1. A CLASSICAL PROBLEM

Let us begin with a very simple question. Given an irreducible polynomial f(7T') €
Z[T), and a prime p, does it necessarily remain irreducible modulo a given prime
p? Obviously not. A question which is slightly less obvious is: given an irreducible
polynomial f(T) € Z[T], is there always a prime p such that f(7") (mod p) is
irreducible? The answer is still no, and a simple example is

f(T) = T*+1.
Indeed, if p = 1 (mod 4), there is an a such that a> = —1 (mod p). With this a,
we have
T*+1 = (T? +a)(T? —a) (mod p).
If p=7 (mod 8), there is a b such that > = 2 (mod p). With this b, we have
T +1=(T*+1)*-2717
=(T* - bT +1)(T* +bT +1) (mod p).

If p =3 (mod 8), there is a ¢ such that ¢ = —2 (mod p) and

T 41 = (T? = 1)> = (=27?) = (T* —cT —1)(T* +¢T — 1) (mod p).

What is behind this? The answer comes from algebraic number theory. Let f
be a normal polynomial and let E be the splitting field of f. Let O be the ring
of integers. Dedekind’s theorem tells us that for all but finitely many primes p,
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the factorization of f (mod p) is identical to the splitting of the ideal pO in the
Dedekind domain O. In other words,

f(T) = A - fo(T)* (mod p)
if and only if
p(’) — pil... er

r

Moreover, the norm of p; is pies /i,

To each p = p;, there is an automorphism Frob, in the Galois group of E/Q.
For most (that is, all but finitely many) primes p, this is the unique automorphism
o which satisfies

o(x) = 2P (mod p).

This automorphism Frob, is an element which is of order equal to deg f;.

In particular, if f is irreducible (mod p), then pO stays prime in E and the
order of Frob, is n = deg f. Thus, Frob, generates Gal(E£/Q) and so, this group
must be cyclic. In the case of T4 + 1, the splitting field is Q((g) which has Galois
group Z/27 x 7/2Z, the smallest non-cyclic Abelian group. In other words, if the
Galois group of F/Q is not cyclic, then f can never be irreducible mod p.

2. A GEOMETRIC ANALOGUE

We now ask for a geometric analogue of this question. A natural place to start
is in the setting of Abelian varieties. In dimension 1, Abelian varieties are elliptic
curves. One can also construct higher dimensional Abelian varieties starting with
curves of higher genus. Thus, if C is a smooth algebraic curve of genus g, the
Jacobian variety Jac(C') is an Abelian variety of dimension g which is ‘spanned’ by
C9.

A simple Abelian variety is one which does not have any non-trivial Abelian
subvariety. If the Abelian variety A is defined over a field K and K is an algebraic
closure of K, we say A is absolutely simple if A is simple viewed over K. Any Abelian
variety is isogenous to a product of simple (absolutely simple) Abelian varieties and
this factorization is essentially unique.

Now we can formulate the geometric question. Given a simple or absolutely
simple Abelian variety over a number field, is there always a prime v (infinitely
many primes, a positive density of primes ...) for which the reduction A4, modulo v
is simple or absolutely simple?

Just as in the case of polynomials, the answer is no. In fact, an absolutely simple
Abelian surface A defined over a number field K with an endomorphism algebra
equal to an indefinite quaternion division algebra, has the property that it has
everywhere good reduction, and at any prime v of K, the reduction A, of A has
the property that it is isogenous to the square of an elliptic curve E2. On the other
hand, there are many examples of simple Abelian varieties whose reduction stays
simple at a set of primes of positive density. This naturally raises the question of
how to explain these phenomenon. For example, as in the case of polynomials, is
there a Galois-theoretic explanation?

This question was discussed in Murty and Patankar [13]. More precisely the
question asked there was as follows.

Question. Let Ax be an absolutely simple abelian variety over a number field K.
Does there exist a finite extension L of K such that the base change of Ak to every

ADVANCES IN MATHEMATICS OF COMMUNICATIONS VOLUME 8, No. 4 (2014), 511-519



SPLITTING OF ABELIAN VARIETIES 513

finite extension of L has simple specializations at a set of places of positive Dirichlet
density?

There it was conjectured that if the ground field was sufficiently large, then there
exists a positive density of such primes if and only if the endomorphism algebra of
A is commutative.

3. CRYPTOGRAPHIC MOTIVATION

The one dimensional case of Abelian varieties over finite fields, namely elliptic
curves, have proved extremely useful in the design of public-key cryptosystems.
To use Abelian varieties over finite fields of higher dimension as the basis of a
discrete-log based cryptosystem, the usual problems of point counting and efficient
arithmetic have to be solved. This has been extensively studied for Abelian varieties
that are Jacobians of hyperelliptic curves and there is also work on the Jacobians
of other families of curves. However, the case of a general Abelian variety is still in
an early stage.

One way to study good candidates for cryptographically useful Abelian varieties
is to begin with one over Q or over a number field and reduce mod p (or v). In doing
this, we encounter the problem that a simple Abelian variety over a number field
may split mod v for every prime v. This problem, which doesn’t arise in the elliptic
curve case, is the main topic of discussion in this article. But besides this, there are
also significant problems in developing efficient arithmetic. It poses new challenges
because we have to develop a more abstract approach which is less dependent on
equations. In the case of elliptic curves, a lot of research has been done in improving
the efficiency of arithmetic but it begins with an explicit model for the curve given
in terms of equations. In the higher dimensional case, one may need to invoke more
general methods as the equations tend to involve a large number of variables. In
joint work in progress, Kumar Murty and Pramath Sastry are developing such an
approach.

It should be pointed out that even in the case of elliptic curves, there are impor-
tant open problems. In particular, given an elliptic curve E over the rationals, we
expect that if there is a prime p such that E(F,) is cyclic, then there are infinitely
many such primes. Some results of this genre are known through the many papers
of Ram Murty on this subject (see, for example, [16]). For example, let us assume
a quasi-Riemann Hypothesis. This means that there is an € > 0 so that Dedekind
zeta functions do not have zeros in the half-plane Re(s) > 1 — €. Then, in [16], it
is shown that for any elliptic curve E defined over QQ which does not have complex
multiplication and which has an irrational 2-division point, we have E(F)) is cyclic
for a positive density of primes p. He had earlier proved this unconditionally (see
[15]) for elliptic curves with complex multiplication. An interesting aspect of this
work is that the existence of such a prime can be formulated in terms of a global
condition.

We also expect that the order E(F,) should be (nearly) a prime for infinitely
many primes, but this is not yet known in general. In fact, Koblitz [10] has conjec-
tured that the number of such primes < x should be

x
T llog)?
for some constant cg > 0. We say “nearly” a prime because if E(Q) has non-trivial
torsion, then the order of the torsion subgroup will divide |E(F,)| for all primes of
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good reduction. In fact, we have to consider the torsion not just in E(Q) but in the
rational points of curves that are Q-isogenous to E. Indeed, if we set

T = lem |[E'(Q)|

where the lem ranges over elliptic curves E' defined over Q and Q-isogenous to E,
then Katz [9] showed that

ged [E(F,)| = T
where the ged is taken over all primes p of good reduction for F. This was made
effective in [12] in the following sense. If ¢ is a prime that does not divide T', then
assuming the GRH, there is a prime p satisfying

p < (flog Nt)?

so that £ does not divide |E(F))|. Here N is the conductor of E.

The best that we know is (assuming GRH) the existence of infinitely many p
for which |E(F,)| has a bounded number of factors. The first such result was in
the work of Ali Miri and Kumar Murty [11] in which it was shown that the bound
could be taken to be 16. This was refined by several authors and the best result
at present is due to David and Wu [5] where the bound of 8 is established. If we
assume that the elliptic curve E has complex multiplication, then it is possible to
obtain unconditional results. For example, Cojocaru [4] showed unconditionally
that if T' = 1, then there are infinitely many primes p for which |E(F,)| has at most
5 prime factors (counting multiplicities). This has been improved by Urroz [19] who
showed (building on earlier work with Iwaniec) that 5 can be replaced by 2.

4. A MORE PRECISE FORMULATION

Returning to the main problem being considered here, we give in this section,
a more precise formulation. Let us recall some notions before we formulate the
question in more precise terms and impose a natural hypothesis on the Abelian
varieties that can be handled by our approach.

Let K be a number field and Ax an Abelian variety defined over K. Let t =
Spec(K), t a geometric point of ¢, S an open subset of the spectra of the ring of
integers of K such that A; = Ax extends to an abelian scheme A over S.

We call an arbitrary S-fiber of A a specialization of A;. A specialization A, =
Axgs, s €S, issimple, if it is a simple object in the category of s-Abelian varieties
up to isogenies, that is, if A is a simple Abelian variety over the residue field k(s)
of s. This is equivalent to the condition that End;(As) ®z Q is a Q-division algebra.
A specialization A, is absolutely simple, if A X§ is simple, for § a geometric point
of s (equivalently, Ay is simple over the algebraic closure k(s) of the residue field at
s.)

A subset E of S\{¢} has Dirichlet density d, 0 < d <1, if

Card({s € 2, Card(k(s)) < z}) = (d+ o(1))

X

log x
as r — 0o. As a fundamental example, the set

{s € S\{t}, k(s) is a prime field}
has Dirichlet density 1.

What we asked above is whether there exists some finite extension L of K such
that for each finite extension K’ of L, if S’ denotes a sufficiently small non-empty
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open sub-scheme of the spectra of the ring of integers of K’, the set
{s" € S'\{t'}, A xg &' is simple},
or what amounts to the same, the subset
{s" € S'\{t'}, k(s') is a prime field, A xg s’ is simple}
has positive Dirichlet density.

5. A NECESSARY CONDITION

A fundamental theorem of Tate gives us a lot of information about the endomor-
phism algebra of an Abelian variety over a finite field. In particular, it allows us
to deduce that if End;(A;) is not commutative, A, = A Xg s is not simple at any
of the points of S with values in a finite prime field. Indeed, for a simple Abelian
variety A over k(s), Tate’s theorem gives the invariants of the division algebra

End,(4;) ®z Q.
In particular, in the case that k(s) is the prime field I, (where p is the characteristic

of k(s)), Tate’s theorem ([17], p. 98, line 1) implies that this division algebra is in
fact a (commutative) field. On the other hand, the specialization homomorphism

sp : End;(A;) <— Endg(A) — Endg(As)

is injective, forcing End;(A4;) to be commutative as well.
Therefore, in order that the question does not have a trivial negative answer, one
should and does impose that Endz(A;) ®z Q be a field.

6. /-ADIC METHODS

Now, given a prime number ¢ invertible on S, consider an ¢-adic approach to the
question.

Choose for each closed point s € S a geometric point S localized at s, and a
“path” chs connecting 5 to ¢ (SGA 1, Exposé V, 7, [8]). Let Fy € m1(s,5) be the
geometric Frobenius, and F} the image of Fs under the composition

_ _\ ch - Pet
m1(s,5) = m(9,5) =5 m (S, 1) =5 GL(H' (A, Qu)),
where p, 7 is the f-adic monodromy representation associated to the abelian scheme
A. Write My, = Im(p,z) for the monodromy, and MZ2 its Zariski closure in
GL(H' (A7, Qe))-

For the purpose of our question, enlarging K to a finite extension if necessary,
we suppose End;(A;) = End;(A4;) and that MZ2* is connected.

Tate’s theorem applied to a closed fibre A, asserts that

Ends(As) Rz Qp - EndF: (Hl(Az, Q[))OppOSitC.
In particular, it shows that A; is simple if F* acts irreducibly on H 1(Az, Q¢). The

S
subset X, of the compact f-adic Lie group M, consisting of those elements acting
irreducibly on H'(Az, Q) is a union of conjugacy classes, and by Krasner’s lemma,
open in M. By the Chebotarev density theorem, the volume of X, in the normalized

Haar measure of M, equals the Dirichlet density of the set
{s € S\{t}, F7 € X},
which is less than or equal to the density of

{s € S\{t}, A; is simple}.
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Thus, our question will have a positive answer, if X, is non-empty over every finite
extension of K.

Each element of X, lies in a maximal torus of M2 acting irreducibly on H'(Az,
Q). Conversely, each torus of MZ irreducible on H'(Az7, Q) contains an open
dense subset whose every Q-point acts irreducibly on H*(Az, Q;). Since My is open
in M#*(Q¢) (Bogomolov [1]), the condition that X, be non-empty is equivalent to

the condition that some maximal torus of MZ" act irreducibly on H'(Az, Qy).

However, if End;(A:) ®z Qg is not a field, one has even that the entire ML,Z“” acts
reducibly on H'(A;z, Qp), for by Faltings [7],

End;(A¢) ®z Qv — EndMZZar(Hl(Ag, Q,))orposite,

If, for instance, E := End;(4;) ®z Q contains an abelian field of group (Z/pZ)*,
p prime, or a non-solvable sub-Galois extension of Q, no completion F ®q Q¢ is a
field.

We need to assume that

End;(A;) ®z Q¢ = E,

is a field for some prime number ¢, that is, £ is either totally ramified or inert in E.
Without this assumption, X, will always be empty and we have little to say.

Besides cyclic fields, many more examples of E satisfying the above assumption
can be obtained as follows. For any fixed prime ¢, for any given finite extension E,
of Qg, by Hilbert’s irreducibility theorem, a large number of totally real number
fields E have E; as their {-adic completions, i.e. £ ®q Q¢ = E;. Every such E is
realizable as the endomorphism algebra of an absolutely simple abelian variety A,
which furnishes a desired example.

From the view point of genericity, most abelian varieties of dimension g have
GSp,, as their monodromy and Z as their endomorphism rings. In this sense, the
condition that £ ®q Q is a field for some prime ¢ is restrictive on E, but not so
much on the abelian variety itself.

From now on, assume that £, = £ ®q Qg is a field for a particular prime ¢.

Then, H'(A7, Qe), as an Ej-linear representation of MZ" or its derived group,
is absolutely irreducible.

7. THE REPRESENTATION THEORY QUESTION
One is led to the following basic question.

Question. Let G be a semi-simple algebraic group over a finite extension E of Qg,
and

pv: G — GL(V)

an absolutely irreducible E-linear representation with finite kernel. Does some maz-
imal torus of G act irreducibly on V' ¢

The question of the previous section corresponds to the special case G = [M, Zzar,
MZ], and V = H'(Az, Q).

One may further suppose G simply connected. A maximal torus ¥ acts irre-
ducibly on V if and only if the weights of V = V ® E relative to T = T® E are
permuted transitively by Gal(E/FE). So if such a torus exists, all the weights have
the same length, that is, by definition, V' is minuscule ([2], Ch. 8, prop. 6, p.127).
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Let D be the Dynkin diagram ([2], Ch. 6, p. 197) of G, and set
pp : Gal(E/E) — Aut(D)

the natural Galois action on D ([18], 2.3), and let «;, i = 1,--- ,7, be the Galois
orbits in D consisting of minuscule vertices corresponding to a minuscule represen-
tation V=V ®--- @V, of G = Gy X -+ X G, G; being the simple factors. Put
D = (D,pp), and ay = ;.

Whether or not G has a maximal torus acting irreducibly on V' depends in fact
only on (D, ay ) ([14], Theorem 2.3, Lemma 3.1) ; if G admits such a torus, we call
(D, ay) an elliptic minuscule pair.

For example, in the case of type C,,, n > 1, with its unique minuscule vertex a;,
the pair (Cy, «q) is elliptic if and only if there exists a Galois representation

p:Gal(E/E) — GL,(Z)

whose image & lies in the group generated by the diagonal matrices and monomial
matrices, and such that & acts transitively on

{617"' y€ny €1, " ,76n}7

where ey, -+ , e, denote the standard basis of Z™ (cf. [14], Lemma 3.1, 3).

Building on this criterion, here is how one proves that (C,, «1) is indeed ellip-
tic (cf. [14], prop. 8.1) : The subgroup & = (7¢) of GL,(Z), where ( : e; —
€2, ,en e, and T : e — —eq, €; — €;, ¥V i > 1, acts simply transitively on
{e1,"++ ,en,—€1, -+ ,—en}. Now, Z/2nZ = & is the Galois group of an unramified
extension of E of degree 2n, in particular, is a quotient of Gal(E/E). So (Cy,, 1)
is elliptic.

The detailed enumeration of all elliptic minuscule pairs with connected Dynkin
diagrams is documented in [14], Theorem 3.2.

Recall that we have explained as above that Ax = A; will have simple special-
izations at a set of places of positive density, provided that X, is non-empty over
every finite extension of K, which in turn is equivalent to the existence of maximal
tori in M, ZZM acting irreducibly on H!(Az7, Q/), and with our hypothesis that Ey is
a field, is further equivalent to the condition that the monodromy representation is
minuscule and that the pair (D, ay) is an elliptic minuscule pair.

Our partial answer with “simple specializations” improved to “absolutely simple
specializations” is given below.

Theorem 1. Let ¢ be a prime number. Suppose Ends(A:)®zQ; = End;(A7)®zQ, =
Ey is a field, M connected and that the monodromy representation H'(Az, Q)
is minuscule whose associated minuscule pair over Spec(Ey) is elliptic. Then A,
specializes to absolutely simple abelian varieties at a set of places of positive Dirichlet
density.

In particular, if End(A) = Z and the monodromy representation is the standard
representation of the group of symplectic similitudes, then A has absolutely simple
specializations at a set of places of positive density. We thus recover a result of
Chai and Oort [3].

In the above theorem, the reason why A; has absolutely simple rather than just
simple specializations at a set of places of positive density results from the assertions
i) and ii) below :
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i) A specialization A is absolutely simple if it is simple and if Endz(A4s X 3) is
commutative.

ii) Whenever MZ*" is connected and the monodromy representation H!(Az,
Q) has no multiple weights, the set

{s € S\{t}, Ends(A; x;3) is commutative}
has density 1.

The proof of i) and ii) is elementary and can be found in [14], 2.9.

Note that the truth of the Mumford-Tate conjecture will imply that the mon-
odromy representation is minuscule ([6], 1.3.9), and in particular, is multiplicity
free. Conversely, if A; turns out to have simple specializations at a set of places
of positive density, we can show that the tensor components of the monodromy
representation are almost always minuscule, without assuming the Mumford-Tate
conjecture nor that E admits totally ramified or inert rational primes ([14], 2.10).
The exceptions are among (A,,rw;), ¢ = 1,n, n > 1, r > 1, (By,w1), n > 1,
(Cg,(dg), (Gg,wl).
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